CINTERNATIONAL

enton
‘Tennessee

Center

-

,t,
S
- Q
s
o
<

 DSCLAIN

s

R NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
' NOT REPRODUCE LEGIBLY.

IMPLEMENTATION OF A RULE-BASED FRAMEWORK
FOR MANAGING UPDATES IN AN OBJECT-ORIENTED VPF DATABASE

David K. Arctur, GeoPlan Center
431 Arch Building, University of Florida
: Gainesville, FL 32611-2(04
email: arctur@ufl.edu

Co-authors:

Eman Anwar, University of Florida
Sharma Chakravarthy, University of Florida
Maria Cobb, Naval Research Laboratory
Miyi Chung, Naval Research Laboratory
Kevin Shaw, Naval Research Laboratory
John F. Alexander, University of Florida

ABSTRACT

This paper presents an approach for supporting reactive capability in an object-
oriented GIS database, through the use of an event interface comprising an event
generator and rule objects. This interface supports specification of events spanning sets
of geographic-feature objects, and detection of primitive and complex events. Rules can
be specified to apply either at a class level (i.c., to all instances of a given geographic-
feature class) or at an instance level. In addition we allow evaluation of both pre- and
post-conditions on changes to a feature. This approach is relevant in three distinct
situations: (1) immediate mode, (0 execute rules immediately before or after some state
change; (2) deferred mode, t0 execute rules at the end of several changes; and (3)
detached mode, 10 perform rule-based actions separately from the state changes. GIS
presents a rich set of problems for which this approach can be useful. This paper outlines
the key elements of the rule-based approach employed in an object-oriented framework
used for viewing and editing Vector Product Format (VPF) source data.

INTRODUCTION

A joint project of the U.S. Naval Research Laboratory (NRL) and the University of
Florida during the past two years has resulted in the development of an object-oriented
prototype application for viewing and managing Vector Product Format (VPF)
geographic databases (DMA 1993), using the Smalltalk language on a Unix platform. As
defined by the Defense Mapping Agency (DMA), the VPF specification uses a relational
database approach for storing metadata, feature attributes and geo-spatial information.
However, the current project uses an object-oriented representation of VPF (OVPF) 1o
facilitate complex, user-interactive operations with the database (Arctur 1995a,b, Shaw
1994).

Building on the literature of recent developments in rule-based frameworks for object-
oriented databases, we have implemented such a framework in our Smallialk OVPF
viewer/editor application to help in managing application-dependent constraints on
changes to geographic features (e.g., preventing the user from creating or moving a land
feature over water). We first present background on the rule-based framework, then
introduce our implementation and provide an example of usage.

0960520 093

e g O

SRl A e

CONCEPTUAL BACKGROUND

Acuve Objects and Databases

Duning the past years database management systems (DBMS) have undergone
Jramatic changes as a result of the increasing requirements of modern day applications.
Convenuonal record-onented database systems are subject to the hmitations of a finite set
of data types and the need o normalize data. These limitations have led to the evolution
of a new paradigm. namely object-oriented database management systems (ODBMS),
which offer increased modeling power, flexible abstract data-typing facilines and the
ability to encapsulate data and operations via the mcssagc' metaphor. Despite the ability
v model complex objects and relatonships, these ODBMSs sull lack some of the
requirements of a farge class of new applications. specifically those requiring monitoring
of snuavons and the ability to respond automatically, possibly subject to uming
CONSLrainis

Active darabases have been proposed to meet some of the requirements of non-
traditional applications (Chakravarthy 1994a). Active ODBMSs extend the normal
tuncuonahity of ODBMSs with support for monitoring user-defined situations and
reacting to them without user or application intervention. These ODBMSs continuously
MonItor siuations o inibate approprate actions in response to database updates,
oeeurrence of particular states. or wansiuon between states, possibly within a response-
ume window. The emergence of this trend of active ODBMSs serves a large variety of
apphications such as GIS. AM/FM. computer integrated manutacturing (Honnavalh
1994), process control, battle management, and network management. Furthermore,
active databases provide an clegant means for supporting integrity COnStraints, access
control, maintenance of derived data, and matertalized views and snapshots.

Active behavior is by no means a new notion. However, 1t has been used w connote
different behavior in various contexts within computer science. Morgan used the term
“active database,” perhaps for the first time (Morgan 1983). (o descnibe a system that
supports automatic update of views and derived data as base data are updated. In the
aruticial-intelligence community the term “acuve object” s used ecither for active
knowledge representation and inference mechanisms or for achieving intelhgent behavior
and concurrent computation. The programming-language community uscs the term
“active object” 1n order to structure concurrent applications 1n an object-oriented
programming language. Ishikawa used the term “active object” to distnguish real-time
ubjects from others which have tming constraints (Ishikawa 1990). In summary, the term
“active” has been used to convey concurrency, asynchronous behavior, and parallehism of
active objects. intelligent behavior of agents/actors, or active capability of a system. In
ather hiterature similar notions are elaborated without using the term active explicitly.

The key disunction we draw between an active and a passive object lies in an active
object’s ability (o monitor its state and take pre-defined actons that are based on the state
changes. This 18 in constrast to a conventional object which responds 1o a message with a

= All acuons performed 1n an object-oriented system are the result of sending a
message 1o an object. The recerver-object then responds by execuung a method by
that name. For improved readability in this paper, we use the terms message and
method interchangeably. However, these terms have distinct meanings: re.. for a
@Iven message there may be one or more merhods defined, as any number of objects
can have o method with the same name.

predefined effect (of course based on the state), but the object cannot monitor its or other
objects’ status. This concept (of activeness), 10 some extent, is present in the actor model

of Agha, etal. (Agha 1986).

Rules
Rules, also referred to as triggers and alerters (Chakravarthy 1989, Dayal 1988,

Dittrich 1986, Su 1988), have been proposed to provide active functionality in ODBMSs.
Rules, in the context of an active DBMS, consist primarily of three components: an event,
a condition, and an action. An gvent is an indicator of a happening (either simple or
complex). Events are recognized by the system or signalled by the user. For example,
events such as the creation of an instance, the change of an attribute’s value, and accessing
an attribute's value are detected by the ODBMS. The condition specifies an optional
predicate over the database state which is evaluated when its corresponding event occurs.
The conditions to be monitored may be arbitrarily complex and may be defined not only
on single data values or individual database states, but also on sets of data objects,
transitions between states of materialized/derived objects, trends and historical data.
Actions are the operations to be performed when an event occurs and its associated
condition evaluates to true. Actions can be programs whose execution may in turn cause
other events to occur. Once rules are specified declaratively to the system, it is the -
system’s responsibility to monitor the situations (event-condition pairs) and execute the
corresponding action when the condition is satisfied without any user or application
intervention. The advantage of using rules as a means of providing active behavior is the
freedom from explicitly hard-wiring code which checks the situations being monitored in

each program that updates the database. :

Events
Incorporation of rules in any system entails identifying what constitutes an event,

developing an expressive event specification language, constructing an event detection
mechanism, and identifying how to represent conditions and actions. Our framework is
based on the classifications in Snoop (Chakravarthy 1994b,c) which defines semantics for
various events and event operators in an object-oriented environment. An event is defined
as something that happens at a point in time. In an object-oriented context, the events of
interest are concerned with changes to an object's state. An object's state changes as the
result of an update operation. Update operations occur when an object receives a message.
Therefore, we view each message sent 10 an object as a potential event. Considering
messages sent Lo objects as events per se is ambiguous; it is not clear whether the event is
raised before or after the execution of the update message. To resolve this ambiguity. the
pre and post clauses are introduced. The "pre” clause indicates the signalling of an event
before the message is executed, while the "post" clause indicates the signalling of an
event after the execution of the message.

Events are categorized as being either primitive or complex. Primitive events are those
signalled at the beginning or at the end of execution of a single specific message. The term
beginning refers to the point before the receipt of the message and end refers to the point
after executing all operations within the method including the return statement. It is
important to note that messages sent to objects are considered as primitive events
regardless of the type of operations performed by the method.

Many applications are not well served by primitive events alone. Complex events (also
called composite events) provide a simple and powerful mechanism for expressing the
conjunction, disjunction and sequence of either primitive or other complex events. In our

auributes, before returning true or false.

framework an event can be defined as the conjus 11" 2 ™ ziems E1 and E2 which is
signalled when both El and E2 occur, regardlos I the amier of execution. The
disjunction of two events would be signalled whw# ¢ E1 & = occurs. The sequence
event would be signalled by completion of the s<«jt=mal ocireace of a set of events.
Further details on the event specification languag#' #* ¥&1 & &siptions of temporally-
complex events may be found in (Chakravarthy 1994

RULE-BASED FRAMEWORK IMILEMENTATION

The foregoing discussion provides a basis fot INTAUCIRE dur mplementation of the
rule-based framework. As events are the most ¢¥N Fart & the design, we will first
describe event objects, then describe rule objects, #Ne IESeME ant &xample of usage. We
will then describe the outer framework in which e £ FEECHOL i rule firing take place.

Event Objects . .
Events are first-class objects in this framewi/h & ey hise sgnificant state and
behavior. The PrimitiveEvent class in Figure | (¥/inc i1 evendsg attribute which is

inherited by all its subclasses. For each new I1181an= of am esent, this attribute is
assigned the name of the message for which the ¢v#M 2 2ised. The ComplexEvent class
defines further attributes used by its own subclasst4-

The key method for each of the event classcs 18 N8 That method takes only one
argument which specifies the name of the messag# Wh Cassies an event 10 be raised.
The event is raised when the object(s) associatétl Wi He eser abject feceives that
message. For PrimitiveEvents the notify: method sy SHpasTs e argument 10 its own
eventMsg attribute value and retums true if they muih. TIr each CamplexEvent subclass,
the notify: method also examines a particular coMNIEICN oF the status of its other

Rule object and then present an example of usage.

Legend
PrimitiveEvent
ClassName
eventMsg attribute
notify: method
L4 ComplexEvent]
1 direction of
event inheritance
event2

event1Occurred ‘ Subclass '
event20ccurred

ConjunctionEvent DisjunctionEvent SequenceEvent

notify: notify: rafy:

Figure 1. Event Class HIwaRT?

Anevent instance is typically created at the time 'l TWE 2200T. We will describe the

Rule Objects

Rule objects have the structure shown in Figure 2. A single class suffices for defining
all rules. The feature attribute may be assigned a pointer to cither a single geographic-
feature instance, such as a road or lake; or to a teature class, such as the defining class for

Rule Description of Rule attributes:
« feature: pointer to a geographic-feature class or
feature feature instance
event « event: pointer to an instance of PrimitiveEvent or
condition one of its subclasses
action + condition: condition-test method name
actionPriority - action: action method name
preOrPost « actionPriority: integer value 1 (low) to 100 (high)j
» preOrPost: flag specifying if condition is tested
before or after the message raising the event

Figure 2. Structure of a Rule Object

roads or lakes. In the former, the rule will be applied only 10 a particular instance whereas
in the latter, the rule will be applied to all instances of the defining class. The event
attribute is assigned a pointer to a specific event instance (introduced above), which could
be either a PrimitiveEvent or a ComplexEvent. The condition attribute is assigned the
name of a method 10 be executed at the time the event is signalled, which will return true
if the condition is met and false otherwise. The action method is then executed if the
condition evaluates 1o true. The preOrPost attribute specifies the relative timing for
execution of the condition method with respect to the message raising the event. The
condition may be evaluated either before the event message is executed, or upon
completion and rewm from the event message exccution. The actionPriority attribute
value is used to help mediate in situations where multiple rules fire at the same time.

Example Rule and Event Objects

An example of a Rule to prevent any BuildingPoint geographic features from being
created over water is shown in Figure 3. In this case, the Rule is associated with the
BuildingPoint class and thus will be applied to all instances of that class. Alternatively, the

/‘7< BuildingPoint class >
1

feature a PrimitiveEvent

——r]

event ' ~
condition ——
action > ("stopCreateFeature’

eventMsg

actionPriority ~ = -
preOrPost —__©
ore’
Legend

~(value object

association pointer

Figure 3. Example Rule and Event Objects

user may associate the Rule with a particular BuildingPoint instance. Due to the setting of
the preOrPost attribute, the condition method onWater: is evaluated before the Event's
eventMsg (the newPoint: method) is carried out. If the condition method onWater: returns
true, the action method stopCreateFeature will then be executed, which will prevent the
eventMsg method newPoint: from being performed. The actionPriority setting ensures
this action will have highest priority among any other Rules which may also fire.

FeatureConstructor Objects

At this point we need to introduce the rest of the framework in which Events are
detected and Rules are fired. In the OVPF viewer/editor tool, all changes to geographic-
feature objects are handled through the use of FeatureConstructor objects (see Figure 4a).
OVPF wuses a construction-script framework with a state
asynchronous events for flexibility in working with runtime-dependent constraints on
changes to a given feature. This framework also is capable of extending its own semantics
at runtime. It is beyond the scope of this paper to fully describe the FeatureConstructor
framework, thus a very simplified portion of it is shown here for discussion.

machine, supporting

FeatureConstructor / AreaFeatureConstructor
feature
nextAction LineFeatureConstructor
point
onWater: PointFeatureConstructor
StopCreateFeature
point1:

VPFFeature

RuleBase
notify:argList:preOrPost:from:

newPoint: BuildingPoint

(b) Partial Feature Class Hierarchy

Figure 4. Key Components of Event Detection Framework

With reference to our example for creating a new BuildingPoint feature, we assume a
Rule-Event pair has already been created (for checking if a new point feature is over
water) and stored in VPFFeature's RuleBase (Figure 4b). This rule base is actually a
persistent collection held in the ODBMS; its reference in VPFFeature is provided for
convenient access at runtime. The following sequence of events could then take place at
the user’s initiation (step numbers correspond to those in Figure 5):

1. The user chooses the appropriate OVPF menu option to add a new geographic

feature, and selects BuildingPoint from a list of available feature classes.

2. The OVPF graphical user interface (GUI) creates a PointFeatureConstructor.

6

Action Summary Direction of Messages

1. User chooses menu option 10 add a) ‘ User l

new feature
1

~ GUI creates a constructor for the new)
teature object ‘ QVPF GUI
\

~

q

2

3. Constructor creates a default
instance of BuitdingPoint, and
Ul ‘ PointFeatureConstructor l

equests coordinate point from G

. GUl returns user-defined location \ 3
coordinates for new featur
d ew lealur® _J\ OVPF GUI

5. Constructor sends message --
teature notify: 'newPoint:’ \ 4
g;ggf};ggf‘.’;’fe, pPointFeatureConstructor
from: self —_\
Y 5
 Feature scans rule base for rules with > Builg@

event message ‘newPoint:

7 Feature finds rule and evaluates A 6
condition message -- RuleBase
7,8

9

)

o

q

constructor perform: ‘on Water:’;

constructor then queries ODBMS and Y

retums true or false -
PointFeatureConstructor

It condition evaluates true, feature
sends message - 7
constructor perform: stopCreateFeatur:
oDBMS
9. If constructorhasto stopCreateFeature,

then constructor assigns ‘stop’ value to
its nextAction attribute

o

q

q

A

10. If constructor's nextAction is 'stop’ it 10, 11

discards the new feature \
11.1f constructor’s nextAction was not 'stop’
then it sends the message --

feature newPoint: point
and finally inserts the new feature in the

quadtree.

Spatial Quadtree

.

Figure 5. Flow of Control and Behavior For Rule-Event Example

‘N

4

T

The Constructor creates a delault BuildingPoint feature object. and initiates a
request to the GUI or & user-selected location coordinate point. o be returned via
the pointt: message

On istruction from the GULL the user chooses a Tocation on the map with the
mouse. and the GUI returns it as the argument in the pointt: message o the
Constructor

Within its point1: method. the Constructor notities the new BuildingPoint feature
instance of an impending Event via the parameterized notify:arglist:
preOrPost:from: message

The new BuildingPoint object executes the inhented
notify:argList:preOrPost:from: method. which checks the rule base for all Rule-
Event pairs whose eventMsg matches the notify: argument, in this casc newPoint:

I matching Rule-Event pair is found. then the Rule’s condition value (onWater:)
18 sentas & message 1o the Constructor w perform. The Constructor's onWater:
method checks the database for any water-related features within a given
tolerance of the user-selected coordinates. and returns true or false. By user’s
preference. this check can be performed cither on just the features currently being
displayed. or on features from all coverages in the ODBMS,

I the onWater: method returns true (coincident water feature was found). the
Rule’s action message 1s then sent 1o the Constructor. In this case if water features
were found. the message stopCreateFeature would be the action message sent o
the Constructor. Note that in the present framework, all applicable conditions are
cvdluated before any actions are performed. It multiple conditions return true.
their action messages are sent (o0 the PointFeatureConstructor in order of
decreasing actionPriority.,

It the Constructor receives the message stopCreateFeature. 1t will sel s
nextAction attribute 1o “stop”.

Upon complenon of all applicable conditions and actions. the new BuildingPoint
ohject returns from executing the notify:arglist:preOrPost:from: method. The
thread of control reverts o the Constructor's point1: method, which then cheeks
Its nextAction seting 111t is “stop” then the new defaul BuildingPoint feature is
discarded. and control returns to the user with a descripuve dialog message

It the nextAction is not “stop” then the Constructor sends the newPoint: message
to the new BuildingPoint. mserts it in the spatial guadtree. and presents the user

with a diglog window to 1ill in any BuildingPoint leature attributes necded

SUMMARY AND PROSPECTS

Fhe GIS field presents a nch set of problems for which this approach can be usetul 1y

can be used i three distnct situations: (1) mmediate mode . 10 execute rules immedsately
belore orafter some state change: 12) deferred mode. 10 execute rules at the end ol several
changestand (3) detached mode. o perform rule-hased actions separately from the state
changes: Furthermore. it has the advantage over tradinonal mference-engine approaches

i that 1t will work with an arbitranly-large database ol persisient objects. rather than

heiny limited w those ohjects which can fitin memory

The rule-cvent framework and procedures were surprisingly simple 10 implement. The
ing method in VPFFeature

FeatureConstructor classes. together with a single supporu
class (nohfy:argUst:p(eOrPosizfrom:), provide 4 simple and Mexible event detection and
rule processing sysiem While it mntroduces some processing overhead. all but the spatial
guery w the ODBMS 1n step 7 are very [ast operations. An important benefit ol this
k 1s the potential Tor directreuse by other FeatureConstructors
pCreateFeature methods.

and changing rules al

object-oriented tramewor
of condition checks and actions such as the onWater: und sto
Furthermore. with this SysIeny provision can he made for adding

runume.

The design presented here 1s castly extended o tngger onany kind of change (create.
modily, deleter w geographic-feature objects. as well as to specific feature aurbutes and
spatial coordinates of a given feature object. This could be a significant advantage over
ny commercial relational and even hybnd object-relational

the triggers supported by ma
ete of a complete

DBMSs. These DBMSscan typically trigger only oninsert. update or del
feature record. rather than being able to discriminate on changes made w a single teature

aurtbute.

There are a number of 1SSUCs related 1o supporung rules that have not been addressed
in this paper. We menton these for completeness as well as (o provide direcuions lor
defined 1 an apphicalion can become very

further areas of rescarch. The number ol rules
Hierent points in time: This cun lead to the

large and may be defined by various users at d
prublem ol having inconsistent or conflicuny rules present within the applhicaton. For
cxample. user A may define a rule R1 whose action may tngger rule R2 defined by user
B. Suppose rule R2's acuion results in triggering rule R1. thereby yielding an infinite loop.
From this scenario. it 1y evident that a mechanism for estabhishing the consistency or
correctness of rules must be an inherent part of any actve sysiem This involves wnung
algorithms which statically detect rule contlicts as well as alganithms which dvnamically
detect problems such as infinite rule triggenng We aren the carly stages of pursuing
these next steps

ACKNOWLEDGMENT

We wish to thank the U.S. Defense Mapping Agency for supporting this work

REFERENCES

Agha, G 1986, "Actors: A Model of Concurrent Computanon i Distributed
Systems”. MIT Press. Cambridge MA.
Anwar. E.. Maugis. L. and Chakravarthy. S 1993 7A New Perspective on Rule
Support lor Object-Oriented Databases” in Proceedings ol ACM SIGMOD. May 1993,
pp. 99-108

Arctur, DL et all 1995 "OVPE Repont Object-Onented Database Design fssues.”

Interim Project Report o DMA. Naval Rescarch Laboratory. June 1995

Arcuur, D, et al. 1995b, “Comparison and Benchmarks for Import of Vector Product
Format (VPF) Geographic Data from Object-Oriented and Relational Database Files,” in

Proceedings of the Fourth Intemational Symposium on Large Spatial Databases, SSD’95,
Springer-Verlag, August 1995.

Chakravanthy, S., et al. 1989, "HiPAC: A Research Project in Active, Time
Constrained Database Management," Technical Report XAIT-89-02, Xerox Advanced
Information Technology, Cambridge, MA, July 1989.

Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D. 1994a, "Design of Sentinel:
An Object-Oriented DBMS with Event-Based Rules”, Information and Software
Technology, Vol. 36:9, September 1994, pp. 559-568.

Chakravarthy, S., Krishnaprasad, V., Anwar, E. and Kim, S. 1994b, "Composite

Events for Active Databases: Semantics, Context, and Detection” in International
Conference on Very Large Databases, VLDB, September 1994, pp. 606-617.

Chakravarthy, S. and Mishra, D. 1994c, "Snoop: An Expressive Event Specification

Language For Active Databases”, Data and Knowledge Engineering Journal, Vol. 14: 10,
October 1994, pp. 1-26.

Dayal, U., Buchmann, A., and McCarthy, D.
Knowledge Model for an Active Object-Oriented Database Management System” in
Proceedings of 2nd International Workshop on Object-Oriented Database Sysiems. Bad
Muenster am Stein, Ebemburg, West Germany, September 1988.

1988, "Rules are Objects Too: A

DMA 1993, Military Standard: Vecior Product Format Draft Document No. MIL-
STD-2407. Defense Mapping Agency, Fairfax, VA.

Diurich, K, Kotz, A, and Mulle, J. 1986, "An Evenv/Trigger Mechanism to Enforce

Complex Consistency Constraints in Design Databases” in Proceedings of ACM
SIGMOD, September 1986.

Honnavalli, R. K. 1994, "Design and Implementation of an event based shop control
application on Sentinel -- An Active Object-Oriented DBMS", MS thesis, Univ. of
Florida, Industrial and Systems Engineering Department, August 1994,

Ishikawa 1990, "Object-Oriented Real-Time Langua

ge Design: Constructs for Timing
Constraints” in QOPSLA '90 Proceedings pp. 289-298

Morgenstern, M. 1983, "Active Databases as a Paradigm for Enhanced Computing

Environments” in Proceedings of International Conference on Very Larpe Data Bases,
VLDB, pp. 34-42.

Shaw, K., et al. 1994, “Development of an Object-Oriented Digital MC&G Database

System for Modeling and Simulation Support”, Final Project Report 1o DMA and DMSO,
Naval Rescarch Laboratory, September 1994,

Su, S., Krishnamurthy, V., and Lam, H. 1988, "An object-oricnted semantic
association model” in Artificial Intelligence: Manufacturing Theory and Practice. The
Institute of Industrial Engincers.

10

REPORT DOCUMENTATION PAGE

Form Approved
OBM No. 0704-0188

Public reporting burden for this coliection of information is estimated to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

2. REPORT DATE
November 1995

1. AGENCY USE ONLY (Leave blank}

3. REPORT TYPE AND DATES COVERED
Proceedings

4. TITLE AND SUBTITLE

Implementation of a Rule-Based Framework for Managing Updates in an Object-

5. FUNDING NUMBERS
Job Order No.

Oriented VPF Database Program Element No. DMA
6. AUTHOR(S) Project No.
David K. Arctur, E. Anwar’, S. Chakravarthy’, M. Cobb, M. Chung, K. Shaw, and Task No.
J. Alexander’ Accession No. DN16-3525
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

NRL/PP/7441--95-0052

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Mapping Agency
8613 Lee Hwy.
Fairfax, VA 22031-2138

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
GIS/LIS 95, November 14-16, 1995, Nashville Tennessee

*University of Florida

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper presents an approach for supporting reactive capability in an object-oriented GIS database, through the use of an
event interface comprising an event generator and rule objects. This interface supports specification of events spanning sets of
geographic-feature objects, and detection of primitive and complex events. Rules can be specified to apply either at aclass level
(i.e., to all instances of a given geographic-feature class) or at an instance level. In addition we allow evaluation of both pre- and
post-conditions on changes to a feature. This approach is relevant in three distinct situations: (1) immediate mode, to execute
rules immediately before or after some state change; (2) deferred mode, to execute rules at the end of several changes; and (3)
detached mode, to perform rule-based actions separately from the state changes. GIS presents a rich set of problems for which
this approach can be useful. This paper outlines the key elements of the rule-based approach employed in an object-oriented
framework used for viewing and editing Vector Product Format (VPF) source data.

14. SUBJECT TERMS 15. NUMBER OF PAGES
GIS, Databases 1

16. PRICE CODE

19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

OF ABSTRACT
Unclassified SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

